Sir,

Renal denervation (RD) is a catheter based method using radiofrequency ablation (RFA) for treatment of patients with resistant hypertension.

The data from two clinical trials (Symplicity HTN-1 and Symplicity HTN-2) has proven the safety and efficacy of RD for treating the patients with resistant hypertension. Symplicity HTN-1 was a non-randomised pilot trial involving 153 patients with mean office blood pressure (BP) of 176/98 ± 17/15 mm Hg taking the mean of 5 BP lowering medications. Bilateral RD with an average of 4 radiofrequency (RF) applications per artery showed a significant reduction in office BP values of 25/11 mm Hg at 6 months and 32/14 mm Hg at 2 years. These results have been confirmed with randomised controlled Symplicity HTN-2 study which included 106 patients with primary end point being office BP 6 months after denervation. Over 84% of patients showed systolic BP reduction of ≥ 10 mm Hg. There were no procedure or device related serious complications. The enrolment for multi-centre, randomised single blind controlled Symplicity HTN-3 has already started with a primary end point of change in office BP after 6 months post denervation.

The catheter based RD improves BP by decreasing the efferent sympathetic signaling to kidneys, increasing renal blood flow, natriuresis, lowering plasma renin activity and by decreasing renal afferent signaling and central sympathetic activation. The potential newer application of RD is in patients with obstructive sleep apnoea (OSA), metabolic syndrome and congestive heart failure (CHF) where the small data has shown to decrease glycosylated haemoglobin (HbA1c) values and decrease in number of apnoea / hypopnoea spells through its influence on baroreceptor activity and an improvement in class of heart failure by decreasing the renal afferent sympathetic activity. The utmost important decision is the choice of which patients to treat. RD needs exclusion of patients with “white-coat hypertension” by ambulatory blood pressure monitoring (ABPM) and exclusion of any secondary causes for hypertension while it is indicated in patients with office systolic BP of > 160 mm Hg despite treatment with 3 anti-hypertensive drugs including diuretic in optimal dosage and patients who are on high risk of stroke, cardiovascular complications and end organ damage due to resistant hypertension. The contraindications for RD are chronic kidney disease, eGFR < 45 ml/min/1.73 m², type 1 diabetes, previous renal artery interventions, anatomical variations and aortic aneurysm, age < 18 years, pregnancy and conditions which increase the bleeding risk. Procedure related complications are rather uncommon but include access site haematoma, pseudoaneurysm, bradycardia, renal artery and access site dissection, progression of underlying renal artery stenosis and regeneration of efferent nerves leading to a relapse of resistant hypertension.

In conclusion, there will be a need for proper evaluation of these patients by a physician and cardiologist by forming a multidisciplinary team so that only patients with true resistant hypertension are treated and the technique is not misused. Large scale multicentric trial data is still lacking. Long term durability

Correspondences

Renal Denervation – So Far So Good

Ankush Sachdeva*, Biswajit Paul**

*Attending Cardiologist, Fortis Escorts Heart Institute, Okhla, New Delhi.
**Consultant Cardiologist, Fortis Escorts Heart Institute, Okhla, New Delhi.
of the procedure and sustainability of outcome still needs to be tested.

References

Dyke – Davidoff- Masson Syndrome

Vipin Ola*, Gaurav Mathur**, Bhupendra Sihag*, JK Meel***, Parmendra Sirohi****, RP Agrawal†

Sir,

Hemiparesis is a common clinical finding in neurological patients admitted in general wards or intensive care units of a tertiary care hospital like ours. It is also not unusual for seizures to be present in a good number of such patients at some point in their natural course of disease. CNS imaging in the form of NCCT or MRI usually reveals an area of infarction or less commonly haemorrhage or a space occupying lesion in a majority of cases. However, a finding like atrophy or hypoplasia of one cerebral hemisphere is not commonly encountered in our day to day practice. Originally described by Dyke, Davidoff and Mason, the syndrome named after them, if not uncommon, is not very commonly found. In the benefit of medical science, we are reporting about one such patient that came to our attention.

An 18 year old Hindu male patient was admitted in the medicine ward with the complaint of recurrent tonic-clonic seizure in right half of his body with secondary generalisation for the last 10 years. On further enquiry it was found that he had a seizure episode at the age of one year also for which no specific treatment was prescribed. But when the seizures became recurrent, starting at the age of 10, despite taking full therapeutic doses of first line antiepileptic drugs for one to two years, he sought further medical help. He was not symptom free on these medications and at the age of 18, he was brought to our hospital for further management. At the time of examination, he had right hemiparesis, brisk deep tendon reflexes (+++) and extensor plantar response (right). There was no evidence of any cranial nerve involvement. Right sided power was grade 4/5 in upper and lower limbs. Left side had normal power. Head circumference was normal, as were vision and hearing. No asymmetry of face was found. No neurocutaneous marker was found. There was no history of birth asphyxia or trauma. On neuro imaging, NCCT scan and MRI of brain revealed atrophy of left cerebral hemisphere, dilation of left lateral ventricle and widening of ipsilateral sulci, consistent with the diagnosis of Dyke Davidoff Mason Syndrome (Figure 1).

DDMS is characterised by seizures, contralateral hemiplegia / hemiparesis with or without mental retardation with atrophy or hypoplasia of one cerebral hemisphere secondary to brain insult in foetal or early childhood period. Our report is a contribution to the few cases reported from India.

The three scientists, in 1933, described the plain skull radiographic and pneumatoencephalographic changes in a patient whose clinical characteristics included hemiparesis, seizures, facial asymmetry and mental retardation (although mental retardation is not always present). Clinical findings may

*Senior Registrar, **Junior Registrar, ***Medical Officer, ****Associate Professor, †Professor and Head, Dept. of Medicine, S.P. Medical College, Bikaner, Rajasthan

Received: 08.02.2011; Revised: 22.04.2013; Accepted: 25.06.2013