INTRODUCTION
Calcium (Ca) is the most abundant inorganic element in human body along with sodium. Unique characteristic of calcium distribution in vivo with astronomical concentration gradients among the skeletal, extracellular and intracellular compartments; 100,000,000 in bone, 10,000 in blood and 1 in intracellular compartment, provides the basis for its vital role in signal transduction and cellular function. Compromise of such concentration gradients on account of Ca deficiency and secondary hyperparathyroidism leading to bone Ca loss or osteoporosis and rise of intracellular free Ca ([Ca]i) may lead to diseases of Ca paradox such as hypertension, arteriosclerosis, Alzheimer’s disease and osteoarthritis due to paradoxical increase of calcium in vascular walls, brain, cartilage and intracellular compartment of many kinds of cells. Mild calcium deficiency is hard to detect despite these serious consequences because of the remarkable constancy of blood calcium concentration maintained by elaborate homeostatic control. Only by successfully counteracting calcium deficiency by AAA Ca with outstanding absorbability, the phenomenon of calcium paradox becomes a recognizable reality within our reach. ©

Active Absorbable Algal Calcium (AAA Ca) : New Japanese Technology for Osteoporosis and Calcium Paradox Disease
T Fujita

Abstract
Active Absorbable Algal Calcium (AAA Ca) is made by submaximally (800°C) heating cleaned oyster shell under reduced pressure and mix it with similarly heated seaweed (Cystophyllum fusiforme). AAA Ca, best absorbed from the intestine among available calcium compounds, consequently most efficiently suppresses parathyroid hormone secretion, increases bone mineral density and decreases vertebral fracture. Aging is associated with calcium deficiency, mostly because of the decreased biosynthesis of 1,25 (OH)₂ vitamin D in the kidney. Parathyroid hormone consequently increases, contributing to various diseases associated with aging such as osteoporosis or decrease of calcium in the bone, as well as hypertension, arteriosclerosis, Alzheimer’s disease and osteoarthritis due to paradoxical increase of calcium in vascular walls, brain, cartilage and intracellular compartment of many kinds of cells. Mild calcium deficiency is hard to detect despite these serious consequences because of the remarkable constancy of blood calcium concentration maintained by elaborate homeostatic control. Only by successfully counteracting calcium deficiency by AAA Ca with outstanding absorbability, the phenomenon of calcium paradox becomes a recognizable reality within our reach. ©

AA A Ca to correct calcium deficiency and its consequences are discussed in this review.

NATURE AND CHARACTERISTICS OF AAA Ca
Wasted oyster shells containing abundant Ca are abundantly found along the seacoast of Japan. In order to utilize them as a calcium supplement, oyster shells cleaned of adhering materials were heated submaximally to about 800°C under reduced pressure avoiding complete ashing to obtain active absorbable calcium (AA Ca) with a characteristic electron microscopic finding of the crystal structure. AA Ca, mainly consisting of CaO as an oxidized product of the CaCO₃, is quite reactive as expected by an extremely high electric conductivity in aqueous solution and high ionization rate. AA Ca, unlike chemically synthesized CaO or its readily transformable derivative, Ca(OH)₂, is least irritable to the gastro-intestinal tract, possibly explained by its characteristic lattice-like crystalline structure, resembling the structure of the oyster shell AACa was readily absorbed from the intestine and also an efficient phosphate binder in the intestinal lumen counteracting hyperphosphatemic state like renal failure.

By adding similarly heated seaweed Cystophyllum fusiforme also growing abundantly along the sea coast of Japan, Heated Algal Ingredient (HAI) to AACa, AAACa

Professor Emeritus, Kobe University, Honorary Director, Katsuragi Hospital, 250 Makamicho, Kishiwada, Osaka, Japan 596-0842.
Received : 10.5.2004; Accepted : 15.6.2004
was produced. AAA Ca, which was found to be even better absorbed from the intestine than AACa, was more efficiently absorbed than many of the known calcium preparations such as CaCO₃ and calcium citrate malate, as shown by increase of urinary Ca excretion and rise of plasma ionized Ca after oral ingestion (Fig 1). Serum parathyroid hormone (PTH) is more efficiently suppressed by AAA Ca than the same amount of Ca supplied as milk. HAI itself stimulates intestinal Ca absorption as shown by significant rise of serum Ca in rats maintained on low Ca diet for 1 week and parathyroidectomized by cautery, exhibiting hypocalcemia and low level of biosynthesis of 1,25(OH)₂ vitamin D. The rise of serum Ca is apparently not due to an increase of bone resorption in view of the increase of bone mineral density and bone Strength Strain Index (SSI) in these animals measured by peripheral quantitative computed tomography (pQCT) measuring volumetric bone density.

AAA Ca and Bone

By pQCT, the only method measuring trabecular and cortical bone mineral density separately, a significant increase of trabecular bone density was demonstrated on supplementation with 900 mg AAA Ca only for 4 months, but not by supplementation with AACa, CaCO₃ or placebo, in 34 pre-and postmenopausal women between 26 and 91 years of age randomly divided into 4 groups.

In a prospective, randomized, double-blind and placebo-controlled study on 58 patients hospitalized in Katsuragi Hospital divided into 3 groups, 900 mg calcium was supplemented as AAA Ca (Group A), the same amount of calcium as CaCO₃ (Group B) and placebo containing no calcium (Group C) contained in 6 indistinguishable capsules daily, in addition to hospital food containing approximately 600 mg Ca over a period of 2 years (Katsuragi Calcium Study). Lumbar bone mineral density measured by dual energy X-ray absorptiometry (DXA) significantly increased in Group A supplemented with AAA Ca than in Group C supplemented with placebo after the 6th month, but Group B supplemented with CaCO₃ showed no significant difference from Group C.

New vertebral fracture occurred in 0 in Group A supplemented with AAA Ca, 143 in Group B supplemented with CaCO₃ and 250 in Group C, per 1000 patient/year, with significant difference between Group A and C, but not between B and C. With advance in age, bone mineral content increased in the head, but decreased in the legs, according to our study on the distribution of the bone mineral content over the whole body by DXA. In the Katsuragi Calcium Study, head bone mineral content increased with corresponding decrease of leg bone mineral content in the placebo Group, but significantly decreased in the AAA Ca group with an increase of leg mineral content, suggesting skeletal rejuvenation. No significant change was noted in the CaCO₃ Group.

Fig 1: Serum ionized Ca during the first 4 hours after oral ingestion of AAA Ca and CaCO₃ to compare the absorptive efficiency. Higher ionized Ca and larger area under the curve for AAA Ca than for CaCO₃ indicates higher absorption of the former than the latter.

Fig 2: Delay in the effect of AAA Ca on vertebral deformity from that on vertebral BMD.

Attempts were made to evaluate pain in osteoporosis and osteoarthritis objectively and quantitatively by measuring a fall of skin impedance in response to exercise loading. In 80 subjects with a mean age of 65 randomly divided into 2 equal groups, A) AAA Ca-bone matrix preparation (TOKI) containing 900 mg Ca as AAA Ca, 3500 mg porcine skin collagen, 200 mg composite mucopolysaccharide and 600 mg glucosamine or B) placebo was supplemented for 4 months. Improvement of subjective pain along with significant attenuation of the fall of skin impedance was noted in
Fig 3: Low blood Ca causes irritation and short temper

Fig 4: Consequences of Ca deficiency

Fig 5: Blood PTH level and survival. Since Ca deficiency requires increased PTH secretion to release Ca from bone to restore the blood Ca level to normal, blood PTH level indicated on the horizontal axis rises in proportion to the degree of Ca deficiency. Survival rate shown as vertical bars decreases its height as blood PTH increases towards the right.

response to exercise load. Basal skin impedance also increased in response to AAACa- matrix preparation, suggesting skin rejuvenation.\(^{21}\)

AAA Ca AND Ca PARADOX

Manifestation of Ca deficiency may be seen directly as a brief hypocalcemia immediately corrected by parathyroid hormone-mediated Ca mobilization from bone and chronic Ca loss from bone or osteoporosis. Under emotional stimulation and hyperventilation, respiratory alkalosis lowers plasma ionized Ca concentration to aggravate the hypocalcemic manifestations of neuromuscular excitability (Fig. 3). AAACa is quite effective in preventing such instability of plasma Ca and stabilize emotional irritability and neuromuscular hyperexcitability.\(^{22}\)

Indirect consequences of Ca deficiency is also called Ca paradox, because of the flooding of Ca in soft tissues and intracellular compartment in response to Ca deficiency, temporary hypocalcemia and PTH hypersecretion.\(^4\) In addition to the well-known examples of Ca paradox such as hypertension, arteriosclerosis, neurodegenerative diseases such as Alzheimer’s disease and diabetes mellitus, osteoarthritis or “chondro”porosis and chondrodegeneration is well explained by Ca flooding in the cartilage,\(^2\) and AAACa proved to be quite effective to prevent and reverse such process as described above, probably by replenishing Ca, inhibiting Ca release from bone and preventing its entrance into cartilage (Fig. 4).

Obesity, which is becoming more and more common in industrialized countries, may also represent another example of Ca paradox. Although overnutrition is generally held responsible for overweight and adiposity, Ca deficiency may also have some contribution, through evoking emotional in stability and consequent overeating and increasing [Ca]I of adipocyte leading to disruption of the control mechanism of fat metabolism. Mice with genetical activation of Ca channel develop obesity, also suggesting Ca-obesity relationship. In Katsuragi Calcium Study, whole body fat content decreased significantly in the AAACa Group from the Placebo Group, but not in the CaCO\(_3\) Group.

Finally, kidney stone has been widely believed to be caused by Ca excess, but an extensive epidemiological study by Curhan et al\(^{23}\) pointed out otherwise. Ca deficiency, instead of Ca excess, causes calcium Ca kidney stone, a dramatic example of Ca paradox. The best explanation for this unexpected result was provided by the binding of oxalate in the intestinal lumen by calcium, inhibiting its absorption and decreasing urinary excretion of oxalate, the presence of which precipitate Ca oxalate stones. The most reactive AAACa was shown to bind oxalate efficiently and decrease urinary oxalate excretion, thereby decreasing the risk of kidney stone formation.\(^{24}\)

It is no wonder that a rise of serum PTH as the result of Ca deficiency is associated with shortening of life by giving rise to these varieties of diseases compromising normal physiological function and representing serious threats to life in a sequence of events summarized as Ca paradox (Fig 5).
REFERENCES

Announcement

"Co-investigators are invited for a multicentric community based project of obstructive sleep apnea". The potential investigators should have running sleep laboratory facilities at their respective centers. The investigators should be from the following zones (South-Chennai, West-Mumbai and East-Kolkata).

For further details please contact: Dr. SK Sharma, Professor and Head, Department of Medicine, Chief, Division of Pulmonary and Critical Care Medicine, All India Institute of Medical Sciences, New Delhi - 110 029, India.
E_mail: surensk@hotmail.com; sksharma@aiims.ac.in; Phone: 91 11 2659 4415; Fax: 91 11 2658 9898