Clostridium difficile Associated Diarrhea: Diagnostic Challenges

Neelam Taneja¹, Kamran Zaman²

Abstract

Clostridium difficile associated diarrhea (CDAD) is a key indicator for monitoring the success of antibiotic stewardship programs in hospitals. Indiscriminate use of antimicrobials coupled with emergence of hyper virulent strains and inadequate infection control measures in hospitals have led to rise in incidence of CDAD. In India, CDAD is still an under recognized cause of diarrhea, due to lack of clinical suspicion, difficulty in culturing the organism and nonavailability of other diagnostic assays due to their high costs. In Indian scenario, we need to generate data on the burden of the disease by conducting robust epidemiological studies. Diagnosis and management of CDAD is a challenge in best of the setups all over the world. There is a need for development of rapid, affordable, point of care gold standard diagnostic assays.

Introduction

In an era of prophylactic/therapeutic antibiotic misuse the incidence of antibiotic-associated diarrhea (AAD) is on the rise.¹ Clostridium difficile is the commonest organism implicated in AAD and is a key indicator for monitoring the success of antibiotic stewardship programs in hospitals.² C. difficile infection (CDI) has been recognised historically as a nosocomial infection; however, it is now been increasingly reported in community setup, thereby CDI can be either community-associated (CA-CDI) or healthcare facility associated CDI (HCFA-CDI).³ C. difficile associated diarrhoea (CDAD) is defined as the passage of three or more unformed stools in 24 hours with detection of C. difficile toxins/ positive culture or presence of pseudomembranous colitis features on colonoscopy and/or histopathology.³,⁴

Epidemiology

A lot of literature is available from developed countries on the burden, epidemiology, risk factor and management of CDAD. According to a point-prevalence survey carried out in Europe, the estimated burden of health-care-associated CDI was 124,000 cases each year and the incidence varied from a range of 4.2–131.8 per 10,000 discharges and 0.6–18.5 per 10,000 patient days.⁵ In the USA, an active surveillance carried out across ten geographic areas showed that C. difficile accounted for half a million cases and 29,000 deaths in 2011.⁶ The emergence of new hypervirulent strains (C. difficile BI/ NAP1/027) that produce binary toxin in addition to toxins A and B have led to marked increased mortality and morbidity due their high-level fluoroquinolone resistance, efficient sporulation and markedly toxin production.⁷,⁸ In India, CDI is usually under-diagnosed because of low clinical suspicion, lack of laboratory facilities and other diagnostic challenges. Though there is a paucity of systematic studies, the prevalence of CDAD in India has been shown to be 2 to 4% in patients without diarrhea and 7 to 30% in patients with diarrhea in different hospital based studies.⁹-¹⁵ The emerging community onset CDAD is also a major concern and the exact prevalence of which is yet to be estimated in India.

Pathophysiology

Pathogenesis of infection caused by this spore-forming, strict anaerobic, gram-positive bacillus includes the acquisition and overgrowth of the organism in the gut followed by the release of two enterotoxins: C. difficile toxin (CDT) A & B, encoded by tcdA and tcdB genes located on PaLoc pathogenicity island.¹⁶ The presence of this PaLoc region decides the toxigenicity of C. difficile. However, it’s important to note that the mere presence of these strains is not synonymous to infection as it is a common colonizer of the neonatal gut (60-70%) and adults (2-3%). C. difficile can also be isolated in stools of asymptomatic patients at the time of hospitalization (10-24%) and inpatients (20-40%).¹⁷-²⁰ It has been noted that patients colonized with C. difficile are less likely to suffer from infection because of the development of protective antibodies.²¹,²² The major risk factors include antibiotic administration, elderly persons (>65 yr. of age), prolonged hospitalization, underlying gastrointestinal malignancy or chronic gastrointestinal disease, previous history of ADAD and immunosuppressive states. The major reason for C. difficile outgrowth and toxin production is the antibiotic-induced dysbiosis of the intestinal microbiota.²³ All antibiotic classes have been shown to be associated with CDI, the most frequently cited are clindamycin, cephalosporins and fluoroquinolones.²⁴ Proton pump inhibitors (PPIs) are also considered to increase the risk of CDAD by decreasing the acidic barrier for organisms.²⁵,²⁶,²⁷,²⁸

Clinical Features

The clinical presentation of CDAD varies from mild, self-limiting diarrhea to fulminant colitis or pseudomembranous colitis. Bowel perforation, toxic megacolon, sepsis, and/or multiple organ dysfunction syndrome are life threatening
complications associated with CDAD.15,28

Diagnostic Challenge

Diagnosis and management of CDAD is a challenge in best of the setups all over the world.3,27-30 The laboratory testing of CDAD is rapidly evolving and there is no single gold standard diagnostic test.31,32 The efficacy of the diagnostic tests is evaluated on the basis of its sensitivity, specificity, turnaround time (TAT), cost, and easy availability of tests which can be combined with clinical features to give best possible results. The diagnostic assays can be divided into those detecting \textit{C. difficile} by toxigenic culture/ its byproducts like glutamate dehydrogenase (GDH), toxins tcdA and/or tcdB; neutralization of toxin and \textit{C. difficile} nucleic acid amplification using targets like 16S rRNA or the genes encoding GDH and the toxin.33,43 The tests that demonstrate the presence of \textit{C. difficile} components are less specific than the toxin detection assays as they cannot differentiate \textit{C. difficile} colonization from active disease.34 There is a paucity of a single good test and the available tests have their limitations and thereby none of them is a gold standard test. However, many of diagnostic guidelines consider detecting toxigenic \textit{C. difficile} by culture in stool to be the gold standard assay.1,17,28

Toxigenic Culture (TC)

Culture of \textit{C. difficile} followed by toxin detection is considered gold standard due to its high sensitivity.30 The specificity is low and many studies with high culture positivity have been seen in asymptomatic carriers, infants and patients recently receiving antibiotics.29 The limitation of culture is its inability to distinguish between toxin and non-toxin producing strains, therefore a further demonstration of toxin production becomes imperative. Stool specimens are treated with heat or alcohol to increase the culture yield. Stool specimens are cultured on specialized media for 24 to 48 hours anaerobically.35 Detection of toxin can be done by enzymatic immunoassays (EIA), or polymerase chain reaction assay (PCR) or by cell cytotoxicity assay (CCA) after 48 hours of incubation. Isolation in culture enables susceptibility testing and molecular typing epidemiological surveillance. Despite being the gold standard test, TC has the limitation of being laborious, time consuming, requiring specialized equipment and trained personnel.35 Diagnostic delays due to prolonged turnaround time have significant implications on treatment initiation decisions and infection control.36,37 This limitation can be overcome by rapid testing methods that detect the \textit{C. difficile} toxin and/or GDH usually by EIA/ ELISA and the Nucleic acid amplification test (NAAT) based assays.

Toxin Detection

\textit{C. difficile} toxin A and B are the major virulence determinants of the disease, as these are responsible for producing symptoms in the patients. Cell cytotoxicity assay (CCA) is considered the gold standard for detecting \textit{C. difficile} toxins.35 It can be performed directly on stool specimens or on a culture isolate. The stool suspension filtrate or supernatant of the culture are inoculated onto a cell line and looked for cytopathic effects like rounding of cells after 24 or 48 hours.34 This test is highly sensitive (94-100%) and specific (99%),35,38 but has the limitation of long turnaround time and procedural complexity. EIAs have become the new standard diagnostic test for CDI detection in most laboratories due to its high sensitivity (98%), wide availability and very short TAT.39 The sensitivity and specificity of EIA for toxin A and/or B has been reported to be variable. Recent studies have shown \textit{C. difficile} toxin A and B EIA has poor sensitivity with a fairly good positive predictive value in contrast to earlier studies.39 Repeat testing following the first positive sample is not recommended during the same diarrheal episode. However, repeated testing after the first negative sample can be done in cases with high clinical suspicion or during the epidemic situation.40 However currently, EIA/ ELISA for toxin detection are no longer recommended as stand-alone tests.41

Glutamate Dehydrogenase (GDH) Assay

GDH is a cell-wall associated component of \textit{C. difficile} existing in both toxigenic and non-toxigenic strains. Thereby GDH positive specimens subsequently require testing with more specific assays like toxin detection and/ or NAAT. Studies have shown that 46% of \textit{C. difficile} isolates in asymptomatic colonizer are non-toxigenic.42 However, GDH detection assay has a high negative predictive value approaching 100% with additional features of being rapid, widely available and affordable. Therefore it is useful as an initial screening step in a multistep approach.33,43

Combined Assay (GDH + Toxin A/B Detection)

The combination of the high specificity of toxin A/B EIAs and high sensitivity of GDH can be clubbed together as a single confirmatory test. Recently, single step combined GDH and toxin (toxin A/B EIA) testing assays have become available and have shown favorable results.44 C. Diff Quik Chek Complete Assay was evaluated in 174 samples, showing a sensitivity (78.3%) better than toxin A/B EIA (70%) and specificity (100%) with a turnaround time of approximately 50 minutes.45 However, few studies have shown that GDH negative and toxin A/B positive samples by this assay, were rarely true positive when evaluated by gold standard assays. The toxin detection component of this combined assay may be redundant.46

NAAT Assay

With the advances in developing diagnostic tools for CDI, Nucleic acid amplification testing (NAAT) was introduced. The NAAT assays target the tcdA / tcdB genes (a positive regulator of toxin A/B production) or the tcdC gene (a negative regulator) and the toxigenic \textit{C. difficile} in a single step reaction. Later on, FDA approved different rapid testing PCR and loop-mediated isothermal amplification (LAMP) based assays.29,30,47,48 Detection of BI/NAP1/027 strain is possible in few of the NAAT based assays, which in turn may guide the therapy as fidaxomycin is associated with lower recurrence with non-hyper virulent strains only when compared with vancomycin.16 The assays have shown higher sensitivity (80 to 100%) and specificity (87 to 99%) and have rapid TATs when compared to GDH and EIA. In recent times, NAATs have become a stand-alone approach for the
Early detection of the disease by NAAT has led to a reduction in CDI-related complications. However, the applicability of NAATs have been limited due to its overly sensitive nature, and thereby its use as a stand-alone test has led to the controversial hiked incidence of CDI. False positives can occur with NAATs because it detects the genes encoding toxin rather than the active toxins. This led to over-diagnosis of C. difficile among colonized patients and increased antibiotic treatment for the colonized or limited infection patients which may not have required treatment.

Diagnostic Algorithm Approach

Due to the non-availability of standard-alone test for CDI diagnosis, the diagnostic algorithms seem to be useful. The important aspect of these algorithms is that the first step includes tests with high sensitivity (high negative predictive value) so that the positive result samples are confirmed as CDI. The different guidelines have differing opinions about the choice of first and second tests, as mentioned in Table 1.

In the first algorithm (Figure 1), first step tests positive and second tests negative suggest a low threshold of CDI / a false negative toxin assay / C. difficile carriage. C. difficile carriers can be a threat for the nosocomial spread. TC in such cases will be helpful and also important for epidemiological tracing. In the second algorithm, the first test includes GDH and toxin A/B EIA, which can be carried out by a combined assay (e.g. C. diff Quick Chek Complete, Techlab). Samples with GDH positive and toxin negative need further evaluation by NAAT/ TC. The samples with toxin positive and GDH negative need to be retested.

Conclusions

Indiscriminate use of antimicrobials coupled with the emergence of hyper virulent strains and inadequate infection control measures in hospitals have led to rise in the incidence of CDAD. In India, CDAD is still an under recognized cause of diarrhea, due to lack of clinical suspicion, difficulty in culturing the organism, nonavailability of other diagnostic assays due to their high costs. In Indian scenario, we need to generate data on the burden of the disease by conducting robust epidemiological studies. There is a need for the development of rapid, affordable, point of care gold standard diagnostic assay. Of the available tests, TC and CCA are restricted to well-equipped laboratories. The NAAT based assays have shown better results, however, their non-availability in resource poor settings due to high costs are limiting factors. Use of toxin detection and GDH assays will be helpful for establishing the diagnosis, which in turn will help taking infection control measures to prevent the spread. Overuse and repeat and frequent testing should be avoided. Tests should be ordered only in symptomatic patients with clinical risk factors having frank diarrheal stools. The colonization studies should be restricted to patients undergoing bone marrow / solid organ transplants where poor outcomes are expected due to more aggressive nature of the disease following transplantation.

Using a cost-effective, reliable (e.g FDA approved), rapid diagnostic assays with clinical evidence of infection is the best approach. The “clinical cure or follow up” testing is not recommended, as the patients tend to shed spores even after cure and such testing can lead to inappropriate courses of treatment.

Table 1: The recommendation for CDAD diagnosis by the different diagnostic guidelines

<table>
<thead>
<tr>
<th>Guideline</th>
<th>Screening assay</th>
<th>Confirmation assay</th>
</tr>
</thead>
<tbody>
<tr>
<td>American college of Gastroenterology</td>
<td>NAAT</td>
<td>GDH / EIA</td>
</tr>
<tr>
<td>SHEA / IDSA</td>
<td>GDH</td>
<td>CTTA / CC</td>
</tr>
<tr>
<td>United Kingdom National Health Service</td>
<td>NAAT / GDH</td>
<td>EIA TOX</td>
</tr>
<tr>
<td>European Society of Clinical Microbiology and Infectious Diseases (ESCMID)</td>
<td>TOX/GDH/ NAAT/ TC</td>
<td></td>
</tr>
</tbody>
</table>

References

20. McFarland LV, Mulligan ME, Kwok RY, Stamm WE. Nosocomial
18. Bolton RP, Tait SK, Dear PR, Losowsky MS. Asymptomatic
17. Planche T, Wilcox MH. Diagnostic pitfalls in Clostridium
difficile Infection.
15. Dhawan B, Chaudhry R, Sharma N. Incidence of Clostridium
 Clostridium difficile in hospitalised patients with acute
diarrhoea in Calcutta. J Diarrhoeal Diseases Research
15. Dhawan B, Chaudhry R, Sharma N. Incidence of Clostridium
difficile infection: a prospective study in an Indian hospital.
17. Planche T, Wilcox MH. Diagnostic pitfalls in Clostridium
18. Bolton RP, Tait SK, Dear PR, Losowsky MS. Asymptomatic
neonatal colonisation by Clostridium difficile. Arch Dis Child
1984; 59:466-472.
negative/B positive Clostridium difficile strains. The Journal
20. Mcfarland LV, Mulligan ME, Kwek RY, Stamm WE. Nosocomial
acquisition of Clostridium difficile infection. N Engl J Med
of Clostridium difficile and serum levels of IgG antibody
22. Kelly CP, Kyne L. The host immune response to Clostridium
23. Theriot CM, Bowman AA, Young VB. Antibiotic-Induced
Alterations of the Gut Microbiota Alter Secondary Bile
Acid Production and Allow for Clostridium difficile Spore
Germination and Outgrowth in the Large Intestine. mSphere
24. Slimings C, Riley TV. Antibiotics and hospital-acquired
Clostridium difficile infection: update of systematic review
25. Verma P, Makharia GK. Clostridium difficile associated
causing toxic megacolon, severe sepsis and multiple organ
27. Debast SB, Bauer MP, Kuijper EJ. European Society of
Clinical Microbiology and Infectious Diseases: update of
the treatment guidance document for Clostridium difficile
diagnosis of Clostridium difficile infections: there is light at
diagnosis, treatment, and prevention of Clostridium difficile
30. Crobabh MJ, Dekkers OM, Wilcox MH, Kuijper EJ. European Society of
Clinical Microbiology and Infectious Diseases (ESCMID):
data review and recommendations for diagnosing
Clostridium difficile infection (CDI). Clin Microbiol Infect
Clostridium difficile infection in the Molecular Test Era. JAMA
Internal Medicine 2015; 175:1792-1801.
32. Bagdasarian N, Rao K, Malani PN. Diagnosis and treatment
of Clostridium difficile in adults: a systematic review. JAMA
2015; 313:398-408.
33. Gilligan PH. Optimizing the Laboratory Diagnosis of
Clostridium difficile Infection. Clinics in Laboratory Medicine
34. Avala MB, Avala NF, Dupont AW. Recent Advances in the
Diagnosis and Treatment of Clostridium Difficile Infection.
35. Delmee M. Laboratory diagnosis of Clostridium difficile
36. Tenover FC, Baron EJ, Peterson LR, Persing DH. Laboratory
diagnosis of Clostridium difficile infection can molecular
amplification methods move us out of uncertainty? The
of Clostridium difficile infection impact on quality of patient
38. Kelly CP, Pothoulakis C, LaMont JT. Clostridium difficile colitis.
Clinical Microbiology and Infectious Diseases: update of
the diagnostic guidance document for Clostridium difficile
41. Iv EC, Li EC, Johnson DA. Clinical update for the diagnosis
and treatment of Clostridium difficile infection. World
Journal of Gastrointestinal Pharmacology and Therapeutics
42. Shim JK, Johnson S, Samore MH, Bliss DZ, Gerding DN.
Primary symptomless colonisation by Clostridium difficile
and decreased risk of subsequent diarrhoea. Lancet 1998;
351:633-636.
43. Fenner L, Widmar AF, Goy G, Rudin S, Frei R. Rapid and
reliable diagnostic algorithm for detection of Clostridium
44. Sharp SE, Ruder LO, Pohl JC, Hatcher PA, Jayne LM, Iwui WM.
Evaluation of the C.Diff Quik Chek Complete Assay, a New
Glutamate Dehydrogenase and A/B Toxin Combination
Lateral Flow Assay for Use in Rapid, Simple Diagnosis of
Clostridium difficile Disease. Journal of Clinical Microbiology
2010; 48:2082-2086.
45. Quinn CD, Seferis S, Babiker W, et al. C. Diff Quik Chek
complete enzyme immunoassay provides a reliable first-
line method for detection of Clostridium difficile in stool
46. Goldenberg SD, Cliff PR, French GL. Glutamate
Dehydrogenase for Laboratory Diagnosis of Clostridium
difficile Infection. Journal of Clinical Microbiology 2010;
48:3050-3051.
47. Noren T, Alkisson I, Andersson J, Akerlund T, Unemo M.
Rapid and sensitive loop-mediated isothermal amplification
test for Clostridium difficile detection challenges cytotoxin
B cell test and culture as gold standard. J Clin Microbiol 2011;
49:710-717.
48. Drudy D, Fanning S, Kyne L. Toxin A-negative, toxin
49. Su WY, Mercer J, Van Hal SJ, Maley M. Clostridium difficile
testing: have we got it right? J Clin Microbiol 2013; 51:377-
378.
50. Planche TD, Davies KA, Coen PG, et al. Differences in
outcome according to Clostridium difficile testing method:
a prospective multicentre diagnostic validation study of
C difficile infection. The Lancet Infectious Diseases 2013;
13:936-945.
51. Ticehurst JR, Aird DZ, Dam LM, Borek AP, Hargrove JT, Carroll
KC. Effective detection of toxigenic Clostridium difficile
by a two-step algorithm including tests for antigen and
colitis: increasing incidence, risk factors, and outcomes in
solid organ transplant recipients. Transplantation 2012;
93:1051-1057.