Evaluation

Evaluation of patients with documented hypertension has three objectives:

- To identify known causes of high blood pressure
- To assess the presence or absence of target organ damage
- To identify other cardiovascular risk factors or concomitant disorders that may define prognosis and guide treatment

Data for evaluation is acquired through medical history, physical examination, laboratory tests, and other special diagnostic procedures

Medical History

- Duration and level of elevated blood pressure, if known
- Symptoms of coronary artery disease (CAD), heart failure, cerebrovascular disease, peripheral vascular disease and CKD
- Diabetes mellitus, dyslipidaemia, obesity, gout, sexual dysfunction and other co-morbid conditions
- Family history of high blood pressure, obesity, premature CAD and stroke, dyslipidaemia and diabetes
- Symptoms suggesting secondary causes of hypertension
- History of smoking or tobacco use, physical activity, dietary assessment including intake of sodium, alcohol, saturated fat and caffeine
- Socioeconomic status, professional and educational levels
- History of use / intake of all prescribed and over-the-counter medications, herbal remedies, liquorice (Yashhtimadhu/Jestamadha), illicit drugs, corticosteroids, NSAIDs, nasal drops. These may raise blood pressure or interfere with the effectiveness of antihypertensive drugs

- Family history of premature coronary artery disease (Males < 55 years, Female < 65 years)
- Increased Waist:hip ratio
- Obesity and Obstructive Sleep Apnoea (OSA)
- High LDL or Total cholesterol
- Low HDL cholesterol and High triglycerides
- High sensitivity C-reactive protein (hs-CRP)
- Estimated GFR <60 mL/min (MDRD)
- Lipoprotein-a is a genetic risk factor
- History of oral contraceptive use and hypertension during pregnancy
- History of previous antihypertensive therapy, including adverse effects experienced, if any
- Psychosocial and environmental factors

Physical Examination

- Record three blood pressure readings separated by 2 minutes, with the patient either supine or sitting position and after standing for at least 2 minutes.
- Record height, weight and waist circumference.
- Examine the pulse and the extremities for delayed or absent femoral and peripheral arterial pulsations, bruits and pedal oedema.
- Look for arcus senilis, acanthosis nigricans, xanthelasma and xanthomas.
- Examine the neck for carotid bruits, raised JVP or an enlarged thyroid gland.
- Examine the heart for abnormalities in rate and rhythm, location of apex beat, fourth heart sound and murmurs.
- Examine the lungs for crepitations and rhonchi.
- Examine the abdomen for bruits, enlarged kidneys, masses and abnormal aortic pulsation.
- Examine the optic fundus and do a neurological assessment.

Laboratory Investigations

- Routine
 - Urine examination for protein and glucose and microscopic examination for RBCs and other sediments.

<table>
<thead>
<tr>
<th>Risk factors for coronary artery disease (RF)</th>
<th>Target organ damage (TOD)</th>
<th>Associated clinical conditions (ACC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age > 55 years*</td>
<td>Left ventricular hypertrophy detected by ECG and/or echocardiogram</td>
<td>Cerebrovascular disease</td>
</tr>
<tr>
<td>Male sex</td>
<td>Microalbuminuria/proteinuria and/or elevation of serum creatinine (1.2-2.0 mg/dl)”</td>
<td>- Transient ischemic attack</td>
</tr>
<tr>
<td>Post-menopausal women</td>
<td>Urinary ACR (albumin creatinine ratio)””</td>
<td>- Ischemic stroke</td>
</tr>
<tr>
<td>Smoking and tobacco use</td>
<td>Ultrasound or radiological evidence of atherosclerotic plaques in the carotids</td>
<td>- Cerebral haemorrhage</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>Hypertensive retinopathy</td>
<td>- Heart disease</td>
</tr>
<tr>
<td>Family history of premature coronary artery disease (Males < 55 years, Female < 65 years)</td>
<td></td>
<td>- Myocardial infarction</td>
</tr>
<tr>
<td>Increased Waist:hip ratio</td>
<td></td>
<td>- Angina</td>
</tr>
<tr>
<td>Obesity and Obstructive Sleep Apnoea (OSA)</td>
<td></td>
<td>- Coronary revascularization</td>
</tr>
<tr>
<td>High LDL or Total cholesterol</td>
<td></td>
<td>- Congestive heart failure</td>
</tr>
<tr>
<td>Low HDL cholesterol and High triglycerides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High sensitivity C-reactive protein (hs-CRP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimated GFR <60 mL/min (MDRD)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lipoprotein-a is a genetic risk factor</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Coronary artery disease is known to occur 10 years earlier in South Asians than in other ethnic groups; ”Microalbuminuria 30-300mg/24hours; “Albumin-Creatinine Ratio(ACR) ≥22 (M) or ≥31 (F) mg/g creatinine
- Haemoglobin, fasting blood glucose, serum creatinine, potassium and total cholesterol
- 12-lead electrocardiogram

• Additional investigations in special circumstances can include
 - Fasting lipid profile and uric acid
 - Echocardiogram

• Other specific tests to rule out secondary causes of hypertension where there is a high index of suspicion are described under “secondary hypertension”.

• At the present state, tests for hs-CRP and microalbuminuria are not recommended for routine clinical use due to cost considerations. However, for certain situations, these can be useful in risk stratification.

- The cost of investigations in the context of the needs of an individual patient and resources available is an important consideration. In patients with essential hypertension where there is a resource crunch, one may be required to initiate therapy without carrying out any laboratory investigations.

Factors Influencing Risk

Before initiating therapy, patients’ overall risk should be assessed considering the presence or absence of additional risk factors; extent of target organ damage and other associated clinical conditions. The presence of one of these three would decrease the threshold for initiation of drug therapy even at lower levels of BP, in that order.

The prognosis of these patients and the choice and need for urgency of therapy, will be dependent on the overall risk stratification (Table 7).